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Abstract. We consider homomorphisms and vertex colourings
of m-edge-coloured graphs that have a switching operation which
permutes the colours of the edges incident with a specified ver-
tex. The permutations considered arise from the action of the
symmetric, alternating and dihedral groups on the set of edge
colours. In all cases, after studying the equivalence classes of m-
edge-coloured graphs determined by the switching operation, we
describe dichotomy theorems for the complexity of the vertex k-
colouring problem and the problem of deciding the existence of a
homomorphism to a fixed target H.

1. Introduction

It is often true that a result which holds for 2-edge-coloured graphs
(graphs with two disjoint edge sets) also holds for oriented graphs with
essentially the same proof. On the other hand, Sen [13] has given
examples of statements that hold for oriented graphs and not for 2-
edge-coloured graphs. These examples may help to explain why a direct
translation between the two families has not been found, and may not
exist. Instead, Nešetřil and Raspaud [11] made a connection between
them by defining (n,m)-mixed graphs, which have n disjoint arc sets
and m disjoint edge sets. Oriented graphs are (1, 0)-mixed graphs, and
2-edge-coloured graphs are (0, 2)-mixed graphs. Results that hold for
(n,m)-mixed graphs hold for both families just mentioned, and others.
Conversely, if a theorem holds for both oriented graphs and 2-edge-
coloured graphs, then there is evidence that perhaps a general theorem
holds for (n,m)-mixed graphs.

The literature contains results about colourings and homomorphisms
of signed graphs, 2-edge-coloured graphs that also have an operation
that reverses the sets to which the edges incident with a specified vertex
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belong, see [3, 12, 13]. These results are similar to results for oriented
graphs with an operation that reverses the arcs incident with a vertex
(see [8]). Hence it may be true that there are general theorems of which
these results are special cases.

As a step in the quest for such theorems, MacGillivray and Warren
[10] consider m-edge-coloured graphs ((0,m)-graphs) together with a
switching operation in which the elements of a group Γ ≤ Sm are
used to permute the sets to which the edges incident with a specified
vertex belong. They showed that some theorems from [2] and [8] about
homomorphisms and colourings hold in this more general setting, and
others hold when the group Γ is Abelian.

In this paper we consider the case when the group Γ is one of several
non-Abelian groups, specifically the symmetric group Sm, wherem ≥ 3,
the alternating group Am, where m ≥ 4, and the dihedral group Dm,
where m ≥ 3 (here Dm is the group of symmetries of a regular m-gon).
We prove results that specify when a given m-edge-coloured graph G
can be transformed by a sequence of switching operations using one of
these groups so that it becomes isomorphic to a given m-edge-coloured
graph H. We then consider the questions of when a given m-edge-
coloured graph G can be transformed to that it has a homomorphism
to a fixed m-edge-coloured graph H, or a vertex k-colouring for some
fixed integer k ≥ 2. In all cases we describe a dichotomy between the
cases which are Polynomial and those which are NP-complete.

The colourings considered here are different than those considered by
Zaslavsky [15]. His colourings are invariant under switching, whereas
in our case switching may change the number of colours needed.

2. Preliminaries

For basic definitions in graph theory, see the text by Bondy and
Murty [1]. We consider only finite, simple graphs and refer to them
as graphs in the interest of brevity. For results about graph colourings
and homomorphisms, see the book by Hell and Nešetřil [7]. For basic
results in Abstract Algebra, see the text by Gallian [5].

Let m ≥ 1 be an integer. A m-edge-coloured graph is an (m+1)-tuple

G = (V (G), E0(G), E1(G), . . . , Em−1(G)),

where

(i) V (G) is a set of objects call vertices ;
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(ii) for 0 ≤ i ≤ m − 1, Ei(G) is a set of unordered pairs of not-
necessarily distinct vertices called the edges of colour i; and

(iii) Ei(G) ∩ Ej(G) = ∅ when i 6= j.

When the context is clear, the vertex set is referred to as V and the
edge sets as E0, E1, . . . , Em−1.

If G is an m-edge-coloured graph, then the underlying graph of G is
the graph with vertex set V and edge set E0 ∪ E1 ∪ · · · ∪ Em−1. An
m-edge-coloured graph G can be regarded as being obtained from its
underlying graph by assigning each edge one of the m available colours.

Let G an m-edge-coloured graph, and Γ ≤ Sm. For x ∈ V (G), the
operation of switching at x with respect to γ ∈ Γ transforms G into the
m-edge-coloured graph G1 = G · (x, γ) with vertex set V (G) and edge
sets

Ei(G
1) = (Ei(G)−{xy : xy ∈ Ei(G))∪{xz : xz ∈ Ej(G) and γ(j) = i}.

The permutation γ acts on the colours of the edges incident with x:
the edge xy belongs to Ei(G

1) if and only if xy ∈ Ej(G) and γ(j) = i.

Let Γ ≤ Sm. Define the relation ∼Γ on the set of all m-edge-
coloured graphs by G ∼Γ H if and only if there is a finite sequence
(x1, γ1), (x2, γ2), . . . , (xt, γt) where xi ∈ V and γi ∈ Γ, 1 ≤ i ≤ t, such
that if G0 = G and Gi = Gi−1 · (xi, γi) for i = 1, 2, . . . , t, then Gt ∼= H.
It is easy to see that ∼Γ is a equivalence relation. If G ∼Γ H, then
we say G is switch equivalent to H with respect to Γ, or that G is
Γ-switchable to H.

Some authors consider switch equivalence as being with respect to la-
belled graphs (see [15]). In this case only m-edge-coloured graphs with
the same underlying graph can be switch equivalent. For example, if
both G and H have underlying graph P3, but {1, 3} is independent in G
while {2, 3} is independent inH, thenG andH can not be switch equiv-
alent. Our definition coincides with this one, up to automorphisms of
the underlying graph. Since our interest is in homomorphisms, taking
automorphisms of the underlying graph into account is better suited
to our purposes. Under our definition any two m-edge-coloured graphs
with underlying graph P3 are switch equivalent with respect to any
group Γ ≤ Sm which acts transitively on {0, 1, . . . ,m− 1}.

Let G and H be m-edge-coloured graphs. A homomorphism of G to
H is a mapping of the vertices of G to the vertices of H that preserves
the edges and edge sets. Formally, it is a function h : V (G) → V (H)
such that xy ∈ Ei(G) implies f(x)f(y) ∈ Ei(H). We sometimes use
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the notation h : G → H to mean that h is a homomorphism of G to
H; when the name of the function is unimportant the existence of a
homomorphism of G to H is abbreviated to G→ H.

For Γ ≤ Sm, a Γ-switchable homomorphism of G to H is a homo-
morphism G′ → H for some G′ which is switch equivalent to G with
respect to Γ. If such a mapping exists then we say G is Γ-switchably
homomorphic to H and write G→Γ H.

While the definition of a Γ-switchable homomorphism of G to H
involves only switch equivalence to G, it transpires that switching at
vertices of H can transform the question of whether G →Γ H into a
question about homomorphisms of m-edge-coloured graphs (without
switching).

Theorem 2.1 ([10]). Let G and H be m-edge-coloured graphs and
Γ ≤ Sm. Then G →Γ H if and only if there exists G′ ∼Γ G and
H ′ ∼Γ H such that G′ → H ′.

In Section 5 we will determine, for all fixed m-edge-coloured graphs
H and all Γ ∈ {Sm : m ≥ 3} ∪ {Am : m ≥ 4} ∪ {Dm : m ≥ 3}, the
complexity deciding the existence of a Γ-switchable homomorphism
from a given m-edge-coloured graph G to H. This is made possible by
our work on switch-equivalence with respect to these groups in Sections
3 and 4.

A vertex k-colouring of a graph G can be regarded as a homomor-
phism of G to a complete graph Kk with vertex set {1, 2, . . . , k}. More
generally, a homomorphism of G to any k-vertex graph H can be re-
garded as a k-colouring of G: adjacent vertices in G are assigned adja-
cent, thus different, colours from V (H).

For an integer k ≥ 1, a vertex k-colouring of an m-edge-coloured
graph G is a homomorphism of G to some m-edge coloured graph with
k vertices. We note that, since non-adjacent vertices of H can be
joined by an edge of any colour with destroying the existence of such a
mapping, the underlying graph of H can be assumed to be complete.
Put differently, a vertex k-colouring of an m-edge-coloured graph G is
an assignment of k colours, say 1, 2, . . . , k, to the vertices of G such that
adjacent vertices get different colours and the vertex colours respect the
edge sets in the sense that each pair of different colours can appear on
the ends of edges in at most one set Ei. It follows from the definition
that vertices joined by a path of length two containing edges from
different edge sets must be assigned different colours.



EDGE-COLOURED GRAPHS AND SWITCHING WITH Sm, Am AND Dm 5

For Γ ≤ Sm, a Γ-switchable vertex k-colouring of G is a Γ-switchable
homomorphism G →Γ H, where |V (H)| = k. The complexity of de-
ciding the existence of such a colouring has been determined for all
Abelian groups:

Theorem 2.2 ([10]). Let Γ ≤ Sm be Abelian. Then, the problem of
deciding whether a given m-edge-coloured graph G has a Γ-switchable
vertex k-colouring is Polynomial if k = 2, and NP-complete if k ≥ 3.

In Section 5 we will determine the complexity of deciding the existence
of a Γ-switchable k-colouring when Γ ∈ {Sm : m ≥ 3} ∪ {Am : m ≥
4} ∪ {Dm : m ≥ 3}.

The chromatic number of an m-edge-coloured graph G is the least k
for which G has a vertex k-colouring, and is denoted by χe(G), or just
χe when the context is clear. The Γ-switchable chromatic number of G
is the least k for which G has a Γ-switchable vertex k-colouring, and is
denoted by χΓ(G), or simply χΓ.

As an aside, we note that the chromatic number of an m-edge-
coloured graph can differ substantially from that of its underlying
graph. For example, consider the 2-edge-coloured complete bipartite
graph with vertex set V = {a1, a2, . . . , an} ∪{b1, b2, . . . , bn} and edge
sets E0 = {aibj : i ≥ j} and E1 = {aibj : i < j}. The underlying
graph has chromatic number two, but χe = 2n = |V | because every
two non-adjacent vertices are joined by a path of length two that uses
an edge from E0 and an edge from E1.

When Γ is Abelian, there is simple relationship between χe and χΓ:

Theorem 2.3 ([10]). Let Γ ≤ Sm be Abelian. For any m-edge-coloured
graph G, χΓ(G) ≤ χe(G) ≤ |Γ|χΓ(G).

When m = 2 switching occurs with respect to S2. The upper bound
on χe(G) is 2χΓ(G), a result which appears in [13] (see [8] for the
corresponding theorem for oriented graphs with the vertex pushing
operation). In Section 5 we shall give evidence that no such simple
relationship is likely to hold when Γ is non-Abelian.

3. Switching using groups with Property Tj

In this section we describe a group property which implies the exis-
tence a sequence of switches which transforms the colour of given edge
xy from i to j, and leaves the colour of all other edges unchanged.
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When there exists j such that this property holds for all i, any m-
edge-coloured graph G is Γ-switchable to one which is monochromatic
of colour j (all edges have colour j). If Γ has this property for all i and
j, then any two graphs with isomorphic underlying graphs are switch
equivalent with respect to Γ. There is a sense in which the results in
this section say that groups with property Tj are less interesting.

Let Γ be a group of permutations of {0, 1, . . . ,m − 1}. For i, j ∈
{0, 1, . . . ,m − 1}, we say Γ has Property Ti,j if it acts transitively on
{0, 1, . . . ,m− 1} and there exists k ∈ {0, 1, . . . , m− 1} and a permu-
tation in α ∈ Stabilizer(k) such that α(i) = j.

If i 6= j, then property Ti,j requires that some k ∈ {0, 1, . . . ,m− 1}
has a non-trivial stabilizer (and so, by the Orbit-Stabilizer Theorem,
every k ∈ {0, 1, . . . ,m− 1} does). Hence, and group with property Ti,j
for some i 6= j, is necessarily non-Abelian. Further, it is implicit in the
definition that any such group has order at last three.

Lemma 3.1. Let G be a m-edge-coloured graph and Γ ≤ Sm. If Γ has
property Ti,j and the edge xy has colour i in G, then G is Γ-switchable
to a m-edge-coloured graph G′ in which xy has colour j and all other
edges have the same colour as in G.

Proof. Since Γ has Property Ti,j, there exists k ∈ {0, 1, . . . ,m− 1} and
α ∈ Stabilizer(k) such that α(i) = j, and β ∈ Γ such that β(j) = k.
Consider the sequence of switches (α, x), (β, y), (α−1, x), (β−1, y), which
transform G into G′.

The only edges which change colour during this sequence of switches
are those incident with x or y, After the first, second, third and fourth
switch in the sequence, the edge xy has colour j, k, k, j, respectively.
Any edge e incident with x and not y changes from its colour ce to
α(ce) and then back to ce. Similarly, any edge incident with y and not
x changes from its colour and then back to it. The result follows. �

For j ∈ {0, 1, . . . ,m − 1}, we say that Γ has Property Tj if it has
Property Ti,j for every i ∈ {0, 1, . . . ,m− 1}.

Theorem 3.2. If Γ has Property Tj for all j ∈ {0, 1, . . . ,m− 1}, then
any two m-edge-coloured graphs with isomorphic underlying graphs are
switch equivalent with respect to Γ.

Proof. Suppose G and H are m-edge-coloured graphs with isomorphic
underlying graphs. Assume that the vertices of G have been relabelled
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so that the underling graph of G equals the underling graph of H.
Define the distance between G and H to be the number of edges of G
which have a different colour than the corresponding edge in H.

The proof is by induction on the distance between G and H. If the
distance between G and H is zero, then they are equal and hence switch
equivalent with respect to Γ. Suppose that any two m-edge-coloured
graphs with isomorphic underlying graphs which are at distance less
than d are switch equivalent with respect to Γ. Let G and H be m-
edge-coloured graphs with isomorphic underlying graphs which are at
distance d.

By Lemma 3.1, there is a sequence of switches that transform G into
an m-edge-coloured graph G′ which is at distance d − 1 from H. By
the induction hypothesis, G′ is Γ-switchable to H. Therefore so is G.
The result now follows by induction. �

Essentially the same argument as above proves the following.

Proposition 3.3. Let G be a m-edge-coloured graph and Γ ≤ Sm. If
Γ has Property Tj, then G is Γ-switchable to a m-edge-coloured graph
G′ which is monochromatic of colour j.

Corollary 3.4. Let G be a m-edge-coloured graph such that the un-
derlying graph of G is bipartite. If Γ ≤ Sm has Property Tj, then G is
Γ-switchable to a m-edge-coloured graph G′ which is monochromatic of
colour i for any i ∈ {0, 1, . . . ,m− 1}.

Proof. Let (X, Y ) be a bipartition of the underlying graph of G. By
Proposition 3.3, G is Γ-switchable to a m-edge-coloured graph G′ which
is monochromatic of colour j. Since Γ acts transitively on {0, 1, . . . ,m−
1}, for any i ∈ {0, 1, . . . ,m−1}, there is a permutation α ∈ Γ such that
α(j) = i. Switching with respect to α at each vertex in X transforms
G′ to a m-edge-coloured graph in which every edge has colour i. �

We observe that any 2-transitive group of permutations of {0, 1, . . . ,
m−1} has Property Tj for every j ∈ {0, 1, . . . ,m−1}. In particular, the
symmetric group Sm is 2-transitive for all m ≥ 3, and the Alternating
group Am is 2-transitive for all m ≥ 4. By contrast, S2, A2 and A3 are
all Abelian. None of these have property Ti,j for i 6= j, and none can
be used to switch any m-edge coloured graph to one where all edges
have the same colour.

The following is now an easy consequence of Proposition 3.3.
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Corollary 3.5. Let Γ ∈ {Sm : m ≥ 3} ∪ {Am : m ≥ 4}. Any m-edge-
coloured graph G is Γ-switchable to a m-edge-coloured graph G′ which
is monochromatic of colour j, for any j ∈ {0, 1, . . . ,m− 1}.

For Sm, m ≥ 3, the corollary was independently proved by Christo-
pher Duffy [private communication] using essentially the same argu-
ment as given above.

4. Switching with respect to Dihedral groups

Recall that we denote by Dm the group of symmetries of the regular
m-gon with vertex set {0, 1, . . . ,m− 1}. It transpires that the cases of
m odd and m even are different. We consider the case of odd m first.

Proposition 4.1. For any odd integer m ≥ 3, the group Dm has Prop-
erty Tj for every j ∈ {0, 1, . . . ,m− 1}.

Proof. Let i ∈ {0, 1, . . . ,m−1}. Since m is odd, either the least residue
of i − j modulo m is even, or the least residue of j − i modulo m is
even. Without loss of generality, the latter holds. Then there exists
k ∈ {0, 1, . . . ,m − 1} such that j − k ≡ k − i (mod m). Let α be
the permutation of {0, 1, . . . ,m− 1} which corresponds to flipping the
m-gon about vertex k. Then α ∈ Stabilizer(k) and α(i) = j, so Dm

has property Ti,j This completes the proof. �

Corollary 4.2. If m ≥ 3 is odd, then any two m-edge-coloured graphs
with isomorphic underlying graphs are switch equivalent with respect to
Dm. In particular, any m-edge-coloured graph is Dm-switchable to one
which is monochromatic of colour j, for any j ∈ {0, 1, . . . ,m− 1}.

We now turn to the case where m is even. Some basic results from
group theory are needed. Note that if m ≥ 2 is even and we let
E = {0, 2, . . . ,m − 2} and O = {1, 3, . . . ,m − 1}, then the partition
{O, E} is a block system for the action of Dm on {0, 1, . . . ,m− 1}.

Proposition 4.3. Suppose m ≥ 2 is even, and let E = {0, 2, . . . ,m−2}
and O = {1, 3, . . . ,m− 1}. Then,

(1) Stabilizer(E) = Stabilizer(O) is a normal subgroup of Dm,
(2) Dm/Stabilizer(E) ∼= S2,
(3) Stabilizer(E) has Property Ti,j for all i, j ∈ E, and
(4) Stabilizer(O) has Property Ti,j for all i, j ∈ O.
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Proof. We prove only statement (3). The proof of (4) is similar. Let
i, j ∈ E . Without loss of generality, i < j. Since i and j are even,
k = (j − i)/2 is an integer. Let α be the permutation corresponding
to a flip of the regular m-gon about vertex k. Then α ∈ Stabilizer(k)
and α(i) = j. The result follows. �

Let G be an m-edge coloured graph, where m ≥ 2 is an even integer.
The 2-edge coloured graph G2 is obtained from G by assigning each
edge its colour in G modulo 2.

Theorem 4.4. Let G and H be m-edge-coloured graphs, where m ≥ 2
is an even integer. Then G and H are switch equivalent with respect to
Dm if and only if G2 and H2 are switch equivalent with respect to S2.

Proof. Suppose G and H are switch equivalent with respect to Dm.
Then there is a sequence of switches S = (π1, x1), (π2, x2), . . . , (πt, xt)
that transforms G so it is isomorphic to H. Each permutation πi ∈
Dm either fixes both E and O, or exchanges them. Let S ′ be the
subsequence of S consisting of the permutations that exchange E and
O. Replacing each of the permutations in this subsequence by the
transposition (0 1) gives a sequence of switches that transforms G2 so
it is isomorphic to H2.

Now suppose G2 and H2 are switch equivalent with respect to S2.
Then there is a sequence of switches A = (σ1, x1), (σ2, x2), . . . , (σp, xp)
that transforms G2 to a 2-edge-coloured graph G′2 which is isomorphic
to H2. Replacing each permutation σi ∈ S2 by (0 1 · · · m− 1) ∈ Dm

gives a sequence of switches that transforms G to a graph G′ in which
edge edge colour has the same parity as in G′2. Since both Stabilizer(E)
and Stabilizer(O) have Property Ti,j for all i, j ∈ E , and all i, j ∈ O,
respectively, the m-edge-coloured graph G′ is Dm-switchable to H. �

Let G2 be a 2-edge-coloured graph. Define the graph PS2(G2) to
have vertex set V (G2) × S2, with (x, π1)(y, π2) ∈ Ei(PS2(G2)) if and
only if xy ∈ Ej(G2) and π1π2(j) = i.

Brewster and Graves [2] (also see [8]) proved that the question of
whether two m-edge-coloured graphs are switch equivalent with respect
to Zm can be translated into a question about isomorphism of m-edge-
coloured graphs. A similar theorem holds for any Abelian group Γ [10].
We state the result only for S2 = Z2.
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Theorem 4.5 ([2]). Let G2 and H2 be 2-edge-coloured graphs. Then G2

and H2 are switch equivalent with respect to S2 if and only if PS2(G2) ∼=
PS2(H2).

Corollary 4.6. Let G and H be m-edge-coloured graphs, where m ≥ 2
is an even integer. Then G and H are switch equivalent with respect
to Dm if and only if PS2(G2) ∼= PS2(H2).

An analogue of the following theorem of Zaslavsky is immediate.

Theorem 4.7 ([14]). The 2-edge-coloured graphs G and H with the
same underling graph are switch equivalent with respect to Z2 if and
only if some automorphism of the underlying graph transforms G to a
2-edge-coloured graph which the same collection of cycles with an odd
number of edges in E0 as H.

Corollary 4.8. Suppose m ≥ 2 is even. The m-edge-coloured graphs G
and H are switch equivalent with respect to Dm if and only if some auto-
morphism of the underlying graph transforms G to an m-edge-coloured
graph with the same collection of cycles with an odd number of edges
whose colour is in E.

Proof. Since switching at a vertex preserves the parity of the number
of edges on each cycle whose colour is in E , any two m-edge-coloured
graphs with the same underlying graph which are switch equivalent
with respect to Dm have the same collection of cycles with an odd
number of edges whose colour is in E . Hence if G and H are switch
equivalent with respect to Dm then some automorphism of the under-
lying graph transforms G to an m-edge-coloured graph with the same
collection of cycles with an odd number of edges whose colour is in E .

Suppose some automorphism of the underlying graph transforms G
to an m-edge-coloured graph with the same collection of cycles with an
odd number of edges whose colour is in E . Then, by Theorem 4.7, the
corresponding 2-edge-coloured graphs G2 and H2 are switch equivalent
with respect to S2. The result now follows from Theorem 4.4. �

Corollary 4.9. Suppose m ≥ 2 is even. Then,

(1) for any i ∈ E, the m-edge-coloured graph G is Dm-switchable to
a m-edge-coloured graph G′ which is monochromatic of colour
i if and only if every cycle in G has an even number of edges
whose colour is in O, and

(2) for any j ∈ O, the m-edge-coloured graph G is Dm-switchable to
a m-edge-coloured graph G′ which is monochromatic of colour
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j if and only if every cycle in G has an even number of edges
whose colour is in E.

Corollary 4.10. Suppose m ≥ 2 is even. If the underlying graph of the
m-edge-coloured graph G is bipartite then, for any j ∈ {0, 1, . . . ,m−1},
G is Dm-switchable to a graph which is monochromatic of colour j if
and only if every cycle has an even number of edges whose colour is in
O.

5. Switchable homomorphisms and vertex colourings

For a fixed m-edge-coloured graph H and Γ ≤ Sm, we define Γ-
switchable HomH to be the problem of deciding whether there is a Γ-
switchable homomorphism ofG toH. In what follows we will determine
the complexity of Γ-switchable HomH for all groups Γ with property
Tj, and then Dm for even m ≥ 2.

We will make use of the following.

Theorem 5.1 ([6]). Let H be a finite, undirected graph. If H is bi-
partite, then HomH is polynomial. If H is not bipartite, then HomH is
NP-complete.

Theorem 5.2. Let Γ ≤ Sm have Property Tj, and let H be an m-
edge-coloured graph. If the underlying graph of H is bipartite, then
Γ-switchable HomH is Polynomial. If the underlying graph of H is not
bipartite, then Γ-switchable HomH is NP-complete.

Proof. Let H ′ be the underlying graph of H. For a given m-edge-
coloured graph G, we claim that G→Γ H if and only if G′ → H ′. It is
clear that if G →Γ H, then G′ → H ′. Suppose G′ → H ′. Both G and
H are Γ-switchable to m-edge-coloured graphs Gj and Hj, respectively,
which are monochromatic of colour j. Since Gj → Hj, the claim follows
from Theorem 2.1.

Suppose that H ′ is bipartite. By the claim, if G is an m-edge-
coloured graph, then G →Γ H if and only if the underlying graph
of G is bipartite. It follows that Γ-switchable HomH is Polynomial.

Now suppose that H ′ is not bipartite. The transformation is from
Hom′H . Let G′ be an instance of Hom′H , that is, an undirected graph.
The transformed instance of Γ-switchable HomH is them-edge-coloured
graph G which is monochromatic of colour j and has underlying graph
G′. The transformation can clearly be carried out in polynomial time.
The result now follows from the claim, and Theorem 5.1. �
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Corollary 5.3. Let Γ ∈ {Sm : m ≥ 3} ∪ {Am : m ≥ 4} ∪ {Dm :
odd m ≥ 3}, and let H be a m-edge-coloured graph. If the underlying
graph of H is bipartite, then Γ-switchable HomH is Polynomial. If
the underlying graph of H is not bipartite, then Γ-switchable HomH is
NP-complete.

It remains to consider the dihedral groups Dm where m ≥ 2 is even.
We will use the following special case of a theorem of Brewster et al.
[3]. Note that the property that every cycle has an even number of
edges of each colour can hold only if the underlying graph is bipartite.

Theorem 5.4 ([3]). Let H be a 2-edge-coloured-graph. If every cycle
has an even number of edges of each colour, then S2-switchable HomH

is Polynomial. If H has a cycle with an odd number of edges of some
colour, then S2-switchable HomH is NP-complete.

The existence of a S2-switchable homomorphism between two 2-edge-
coloued graphs can be transformed into one about the existence of a
homomorphism without switching. A similar statement holds for all
Abelian groups, see [10].

Theorem 5.5 ([2, 8]). Let G2 and H2 be 2-edge-coloured graphs. Then
G2 →S2 H2 if and only if PS2(G2)→ PS2(H2).

Corollary 5.6. Let H be a m-edge-coloured graph, where m ≥ 2 is
even. If every cycle has an even number of edges whose colour is in E
and an even number of edges whose colour is in O, then Dm-switchable
HomH is Polynomial. If H has a cycle with an odd number of edges
whose colour is in E or an odd number of edges whose colour is in O,
then Dm-switchable HomH is NP-complete.

Proof. Suppose If every cycle in H has an even number of edges whose
colour is in E and and an even number of edges whose colour is in O.
Then every cycle in H2 has an even number of edges of each colour.
By Theorem 5.4, S2-switchable HomH2 is Polynomial. It follows from
Theorem 4.4 that Dm-switchable HomH is Polynomial.

Now suppose H has a cycle with an odd number of edges whose
colour is in E or an odd number of edges whose colour is in O. The
transformation is from S2-switchable HomH2 . Let G2 be an instance
of S2-switchable HomH2 . The transformed instance of Dm-switchable
HomH is the m-edge-coloured graph G which is identical to G2 (the
edge sets E2, E3, . . . , Em−1 are all empty). The transformation can
clearly be carried out in Polynomial time. The result follows from
Theorem 4.4. �
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We now determine the complexity of deciding whether a given m
edge-coloured graph G has a Γ-switchable vertex k-colouring for the
groups Γ we have been considering.

Theorem 5.7. Let k ≥ 2 be in integer and Γ ≤ Sm. If Γ ∈ {Sm : m ≥
2} ∪ {Am : m ≥ 2} ∪ {Dm : m ≥ 2} or if Γ has property Tj for some j,
then the problem of deciding whether a given m-edge-coloured graph G
is Γ-switchably k-colourable is Polynomial if k = 2, and NP-complete
if k ≥ 3.

Proof. If Γ ∈ {S2, S2, A3, D2} then the statement follows from Theorem
2.2. Hence suppose Γ ∈ {Sm : m ≥ 3}∪{Am : m ≥ 4}∪{Dm : m ≥ 3}.

An m-edge-coloured graph G has a vertex 2-colouring if and only if
it is bipartite and Γ-switchable to be monochromatic of some colour.
That is, if there is a Γ-switchable homomorphism to a monochromatic
K2. By Theorem 5.2 and Corollary 5.6, this can be decided in Polyno-
mial time.

Suppose k ≥ 3 and Γ ≤ Sm has Property Tj. The transformation
is from vertex k-colouring of undirected graphs. Recall that a vertex
k-colouring of an undirected graph G is a homomorphism G → Kk.
Suppose an undirected graph G is given. The transformed instance
is the m-edge-coloured graph Gj which is monochromatic of colour j.
The transformation can be accomplished in Polynomial time. A vertex
k-colouring of G is clearly a Γ-switchable vertex k-colouring of Gj, and
vice-versa.

Finally, suppose k ≥ 3 and Γ ∈ {Dm : m ≥ 4 even}. The transfor-
mation is from S2-switchable vertex k-colouring. Let G2 be an instance
of S2-switchable vertex k-colouring (which is NP-complete by Theorem
2.2). The transformed instance of Dm-switchable vertex k-colouring is
the m-edge-coloured graph G which is identical to G2 (the edge sets
E2, E3, . . . , Em−1 are all empty). The transformation can clearly be car-
ried out in Polynomial time. The result follows from Theorem 4.4. �

If Γ has property Tj for some j ∈ {0, 1, . . . ,m − 1}, then a cer-
tificate that a given m-edge-coloured graph G does not have a vertex
2-colouring is an odd cycle in the underlying graph of G. If Γ is Dm,
where m ≥ 2 is even, then it is a cycle with an odd number of edges in
E or an odd number of edges in O.

We conclude the paper by considering whether there might be a
version of Theorem 2.3 for non-Abelian groups. Our goal is to suggest
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that the constant in the upper bound is likely to be a fairly complicated
function of the group. We will make use of a result for m-edge-coloured
graphs which is similar to Observations 1 and 4 in [9] (for oriented
graphs).

Proposition 5.8. Let G be a graph, and k be a positive integer. If

χe ≤ k for every m-edge-colouring of G, then m(k
2)k|V | ≥ m|E|.

Proof. Regard the vertices of G as being labelled. Then there are m|E|

labelled m-edge-coloured graphs with underlying graph G.

Any partition of the vertex set of G into at most k independent sets

is a vertex k-colouring of at most m(k
2) of the m|E| labelled m-edge-

coloured graphs with underlying graph G. Since the number of possible

vertex k-colourings is less than k|V |, it follows that m(k
2)k|V | ≥ m|E|. �

Proposition 5.9. For every integer ∆ ≥ 2, there exists an m-edge-
coloured graph for which the underlying graph is ∆-regular and χe >
m∆/2.

Proof. Let G be a ∆-regular graph. Then G has ∆|V |/2 edges. By
Proposition 5.8, if every m-edge-colouring of G has χe ≤ m∆/2, then

logm(χe) ≥ ∆/2−
(
m∆/2

2

)
/|V |, or equivalently, χe ≥ m∆/2 ·m|V |/(

m∆/2

2 ).

Since there are ∆-regular graphs with arbitrarily many vertices, and
m and ∆ are constants, the graph G can be chosen to have enough
vertices so that

m|V |/(
m∆/2

2 ) > 1.

It follows that some m-edge-colouring of G has χe > m∆/2. �

Suppose we seek a version of Theorem 2.3 for Dm, where m is odd.
Since χDm(G) = χ(U), where U is the underlying graph of G, we would
need a constant c such that

m∆/2 < χe ≤ c · χ(U) ≤ c(1 + ∆(U)) ≤ m∆(U)m∆+1,

where the Brooks-like upper bound is from [10]. Such a constant c
must be exponential in the maximum degree of the underlying graph,
whereas |Dm| is linear in m.

We suggest that the underlying reason is that for Abelian groups it
can be assumed that there is one switch at each vertex (possibly with
respect to the identity element), whereas for non-Abelian groups the
order in which the switches are made is important.
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